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The environment inside a living cell is dramatically different from that found in in vitro models, presenting
a problem for computational models of biochemistry that are only beginning to capture these differences. This
deviation between idealized in vitro models and more realistic intracellular conditions is particularly problem-
atic for models of molecular self-assembly, but also specifically hard to address because the large sizes and
long assembly times of biological self-assembly systems force the use of highly simplified models. We have
developed a prototype of a molecular self-assembly simulator based on the Green’s function reaction dynamics
�GFRD� model to achieve more realistic models of assembly in the crowded conditions of the cell without
unduly sacrificing tractability. We tested the model on a simple representation of dimer assembly in a two-
dimensional space. Our simulations verify that the model is computationally efficient, provides a realistic
quantitative model of reaction kinetics in uncrowded conditions, and exhibits expected excluded volume
effects under conditions of high crowding. This work confirms the effectiveness of the GFRD technique for
more realistic coarse-grained modeling of self-assembly in crowded conditions and helps lay the groundwork
for exploring the effects of in vivo crowding on more complex assembly systems.
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I. INTRODUCTION

Intracellular biochemistry occurs in an environment that
is strikingly different from that found in in vitro solution-
based reaction systems and traditionally assumed by ideal-
ized computational models. The interior of a living cell is
characterized by high heterogeneity of reactants, the pres-
ence of numerous components of cellular machinery that as-
sist or regulate various kinds of chemistry, and dense crowd-
ing of macromolecules �1�. A typical concentration of
macromolecules for an in vitro study is 1–10 mg /ml,
whereas the total concentration of macromolecules in the cy-
toplasm is 50–400 mg /ml �2�. For example, the estimated
concentration of macromolecules in Escherichia coli is
300–400 mg /ml �3�. Moreover, a cell contains many immo-
bilized proteins, which further calls into question some of the
basic assumptions drawn from models of solution-based
chemistry. For instance, one-third of the glycolytic enzymes
in the squid giant axon are nondiffusible �4�. Also, larger
molecules are less diffusible in a cytoplasm than in an in
vitro solution with almost the same molecular concentration
as the cytoplasm �5–7�. These deviations between the intra-
cellular condition and in vitro models have been found to
have large effects on many biological reaction systems, es-
pecially those involving macromolecular assembly pro-
cesses. For example, molecular crowding has been shown to
drive the assembly of many kinds of macromolecular struc-
tures, such as actin filaments �8,9�, spectrin �10�, amyloids
�11�, viral capsids �12�, and DNA polymerase �13�, as well as
numerous forms of protein folding and aggregation �14–16�.

In the present work, we focus on modeling one specific
difference between the intracellular environment and the as-

sumptions of typical in vitro models: macromolecular crowd-
ing. Our long-term goal is to develop more realistic compu-
tational models of all of the ways in which the cell influences
assembly chemistry. The experimental observations dis-
cussed above suggest that accurate models of crowding ef-
fects on assembly chemistry are a necessary, although likely
far from sufficient, component to developing genuinely pre-
dictive models of assembly chemistry in the cell. By ap-
proaching this one issue in isolation, we hope to more pre-
cisely characterize the limits of our computer models in
simulating assembly in crowded environments without hav-
ing to consider confounding effects from other features of
the cellular environment. Unfortunately, capturing overall as-
sembly dynamics of some of the more important assembly
systems, such as the actin or microtubule cytoskeletons or
viral capsids, can require modeling of hundreds or thousands
of components over time scales of seconds. Such simulations
are computationally challenging for even the most coarse-
grained models. Computational models for simulating as-
sembly processes in crowded conditions are therefore far
from achieving the necessary realism without requiring un-
realistic computational resources �17–19�. Fast, space-free
models—e.g., continuum mass action models and stochastic
Gillespie models �20�—can handle large system sizes and
complexities and can in principle be used to model assembly
in crowded conditions through adjustments in reaction rates.
The data needed to make these adjustments empirically are,
however, not easily gathered and the corrections are difficult
to make from first principles �17�. Various forms of Brown-
ian dynamics models �see, for example, �21�� can directly
represent crowded conditions, as well as many other features
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of the cellular environment, but only with computational
costs too high for the time scales needed for the more chal-
lenging assembly systems. Discretized lattice Monte Carlo
models �22–25� provide an intermediate between these two
extremes, directly simulating crowding conditions at much
lower cost than off-lattice spatial models. These discretized
models, however, oversimplify the movement of each mol-
ecule in a lattice space and impose unrealistic constraints on
particle diffusion and assembly structures. These models are
thus likely to exaggerate crowding effects and have limited
ability to model more complex assembly geometries.

In this paper, we examine the utility of Green’s function
reaction dynamics �GFRD� �26�, a stochastic particle-based
model recently developed by van Zon and ten Wolde, to
capture the effects of cellular levels of crowding on assembly
chemistry. GFRD uses an event-driven model to produce
highly efficient off-lattice simulations of chemistry in
crowded environments. For this reason, it shows promise as
a means of developing more realistic models of large-scale
reaction networks in the cell. GFRD has, for example, re-
cently been adopted by several groups as a method for simu-
lating generic cellular reaction and signaling networks
�26–28�. GFRD’s advantages in handling large numbers of
particles and long time scales would seem to be particularly
useful for modeling assembly chemistry. We have therefore
developed a prototype assembly simulator using GFRD to
implement a simple model of dimer assembly in a two-
dimensional diffusive space, similar to what one would find
at the leading edge of a cell. We then use a series of simu-
lations to establish three key features of the model: that it
efficiently scales to the system sizes needed for modeling
cellular assembly reactions, that it provides reliable quanti-
tative models of assembly under noncrowded conditions that
match the behavior of simple mass-action models, and that it
exhibits the expected effects of crowding under conditions of
dense packing of reactant molecules or inert crowding
agents. This work demonstrates the value of GFRD for over-
coming some of the limitations of prior methods for model-
ing large-scale assembly reactions in the cell.

II. METHODS

For clarity, we briefly summarize the GFRD method. The
reader is referred to the primary reference by von Zon and
ten Wolde �26� for details on the method and the theory
behind it. The method represents a set of diffusing particles,
each of which is presumed to have a position in space at any
given point in time. Collisions between particles provide op-
portunities for reaction events. The model is therefore similar
to that assumed by a Brownian dynamics simulation. The
key insight of GFRD is that we need not explicitly track
particle positions at all points in time, as is done in Brownian
dynamics. Rather, using a probabilistic model of the diffu-
sion process, we can represent particle positions as probabil-
ity distributions over the space that particles might occupy.
We can then defer the actual computation of a particle’s po-
sition until there is some appreciable probability that it is
involved in a collision. Figure 1 illustrates the basic concept
behind the GFRD method. If we have observed a particle at

some position x=0 at time t=0, then we can derive its dis-
tribution of possible positions at some later time t� from a
one-dimensional random walk model �29�. The resulting dis-
tribution of particle positions at time t� is the Gaussian

P�x,t�� =� 1

4�dt�
e−x2/4dt�, �1�

where d is the diffusion coefficient in the random walk
model, provided the particle has not been involved in any
collisions between times t=0 and t= t� �29�. The root mean
square displacement of the particle in this one-dimensional
case �xrms� is given by �2dt�, which is equal to the standard
deviation of the Gaussian distribution in Eq. �1�. We can
therefore place an outer bound on the possible positions of
the particle with high confidence by defining a circle that
encloses all but a small fraction of the Gaussian in each
dimension. We call this outer bound a “diffusion limit
circle.” We only need to evaluate the position of a particle
when its diffusion limit circle comes in contact with that of
another particle, meaning that there is some appreciable
probability that they have collided. A simulation with this
model can proceed very efficiently by jumping between col-
lisions of diffusion limit circles, as illustrated in Fig. 2. At
the start of a simulation, we compute the times at which each
pair of particles’ diffusion limit circles will interact, ignoring
all other particles. Each step of the simulation then consists
of identifying two colliding diffusion limit circles, evaluating
positions of the particles given their position distributions,
testing for possible reaction events, and reevaluating colli-
sion times for those particles with each other or any others in
the simulation.
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FIG. 1. Illustration of the GFRD model for diffusion in one
�a�,�b� and two dimensions �c�. �a� Distribution of a particle’s posi-
tion at time t=0, when it has a fixed known position in space. �b�
Distribution of positions at time t�, described by a Gaussian cen-
tered on the initial position, where d is the diffusion coefficient. The
diffusion limit region of this one-dimensional case is from −3xrms to
3xrms, which covers 99.73% of the full distribution of possible par-
ticle positions. �c� Diffusion limit circle for a two-dimensional
model defined by a three standard deviation confidence interval
from the Gaussian in each dimension. The radius of this limit circle
�Rdiff� is 3xrms, which covers 98.89% of the full distribution of
possible particle positions.
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In order to implement a GFRD model, we first define the
radius of a diffusion limit circle �Rdiff�, and then need a pro-
cedure to calculate collision times of diffusion limit circles.
For the present simulator, Rdiff is set to three times the stan-
dard deviation of the Gaussian distribution for a single coor-
dinate in isolation. The square of the distance the particle has
diffused in two dimensions can be expressed as the sum of
the squares of two independent normal distributions, a quan-
tity that is �2 distributed with two degrees of freedom. This
concept is illustrated in Fig. 1. The probability the particle
will be confined to the radius Rdiff is then equivalent to the
probability that the �2 random variable is within �Rdiff�2,
which is 98.89%. Therefore, the radius of a diffusion limit
circle in two-dimensional �2D� space for a time duration ��t�
is defined as follows:

Rdiff�2D���t� = 3xrms = 3yrms = 3�2d�t . �2�

We can calculate the collision time �t�� of two diffusion limit
circles, shown in Fig. 2, as follows:

dAB = Rdiff,A�t� − tA� + Rdiff,B�t� − tB�

= 3�2d�tA + 3�2d�tB

= 3�2d�t� − tA� + 3�2d�t� − tB� , �3�

where dAB is the distance between two particles A and B, and
tA and tB are the times at which the positions of particles A
and B were last determined. Eq. �3� can be analytically
solved to determine the collision time of any two diffusion
limit circles. The solution of Eq. �3� for the diffusion model
assumed in the present work is given in Eqs. �11�–�13� later
in this section.

For the simulations presented here, we used a reflective
hard boundary, meant to better model chemistry within a
single prokaryotic cell or an enclosed compartment of a eu-
karyotic cell. A reflective boundary has a simple implemen-
tation in the GFRD model: when new particle positions are
sampled, any sampled position outside the boundary of the
space in either dimension is reflected inside the boundary by
the same distance by which it was initially outside the
boundary. So, for example, a particle sampled at 1 nm past
the boundary will be reflected to a position 1 nm inside the
boundary. The GFRD method can alternatively be used to
represent a periodic boundary condition, although we do not
use that model in the present work.

Given a method for computing collision times, the core of
a GFRD simulation consists of a discrete event loop that
steps between collision events. We adapt a prior method for
queue-based simulation of generic assembly systems �30� to
this GFRD model. At each step of a simulation, we first
check an event queue to identify the next potential collision
event. We then sample new positions for particles involved
in that next event and determine from the sampled positions
whether a collision has in fact occurred. In the event of a
collision, we consider possible reaction events, as discussed
below, and implement the reaction, if any. Finally, we iden-
tify new collision events for the particles just processed and
any reactants produced from their collision and add these
new events to the queue, preparing us for the next round of
simulation.

A. Adapting GFRD for assembly reactions

For an assembly system, we must consider two kinds of
reactions: association and dissociation. Association reactions
can occur when two particles with compatible binding sites
collide. The forward reaction rate �K+� of any given associa-
tion reaction thus depends in part on the collision rate, and
hence the diffusion model, and in part on the probability of
binding upon collision. We model waiting times to dissocia-
tion events by an exponential distribution, which has a single
parameter uniquely determined by K−. In an uncrowded sys-
tem, the dissociation reaction rate �K−� is independent of the
diffusion model. Each time an assembly is created, we
sample a dissociation time for that assembly from the expo-
nential distribution and place it in the event queue with the
collision events.

For both reaction types, however, crowding may influence
reaction rates by sterically hindering reactions. Figure 3 il-
lustrates cases of possible steric hindrance that may occur on
reaction events. In Fig. 3�a�, two monomer reactants �M1 and
M2� have come sufficiently close as to form a dimer. These
particles may either bind to form a dimer �D1� or sample new
positions to model a collision that does not result in binding.
The simulation uses a user supplied binding probability �B�
to choose whether to bind M1 and M2 into D1. Either event
might, however, be blocked by steric collision. If binding is
selected but the dimer would produce a steric clash with
another particle, as in Fig. 3�a��1�, then the event is reversed
and it is assumed the binding reaction was blocked by steric
hindrance. There is also a small probability that sampling
new positions may result in overlap with another particle’s
diffusion limit circle, as in Fig. 3�a��2�. In that case, as well,
the event is reversed and it is assumed to have been hindered.
Similarly, if a dissociation event rises to the top of the queue,
as in Fig. 3�b�, then the system would ordinarily split the D1
into M3 and M4 and sample positions for M3 and M4 relative
to the center of D1. If that event produces no steric collisions
�Fig. 3�b��1�� then the simulator can sample new collision
times for M3 and M4 and proceed. If, however, the separation
would produce a steric clash �Fig. 3�b��2��, then we presume
that reaction to have been hindered, block the dissociation,
and sample a new dissociation time for D1. Crowded condi-
tions thus have the potential to reduce effective rates of both
forward and reverse reactions.

nA
tA

nB
tB

nA
tA

nB
tBdAB

R
diff,A

R
diff,B

(a) (b)

FIG. 2. Calculation of the collision time of two diffusion limit
circles. �a� Two particles A and B initially separated by a distance
dAB at the original time. �b� The two particles at the time of their
collision event �t��, defined as the time at which dAB=Rdiff,A�t�
− tA�+Rdiff,B�t�− tB�.
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One important consideration in adapting GFRD to general
assembly chemistry is accounting for the differential diffu-
sion rates of complexes. We use a correction for diffusion of
assembled structures based on the Stokes-Einstein diffusion
theory. The Stokes-Einstein theory estimates the diffusion
coefficient to be

d =
kT

6��r
, �4�

where k is Boltzmann’s constant, T is the absolute tempera-
ture of the solution, � is the viscosity of the solute, and r is
the radius of the spherical solute molecule �29�. We assume
that all particles are spherical and placed on the plane, so that
individual particles are considered as circles in our 2D
model. The diffusion rate should thus vary inversely with the
square root of particle radius, giving us a diffusion limit
circle in the two-dimensional case of

Rdiff�2D� = 3� kT

3��r
�t , �5�

which is determined by substituting Eq. �4� into Eq. �2�.
Figure 4 provides pseudocode for our model of GFRD for
generic assembly simulations.

B. Implementing a model dimer system

In order to validate this approach as a model of assembly
in crowded environments, we chose to examine the simplest
possible assembly system: a homodimer described by the
reaction system

M + M�
K−

K+

D .

We can define the diffusion limit radii for a dimer system in
terms of the monomer radius r1 and the dimer radius

r2 = �2�r1. �6�

� is the ratio of the area of the dimer to that of two mono-
mers. The radii of the diffusion limit circle of a monomer
and a dimer for a given time interval ��t� are therefore as
follows:

Rdiff�2D�monomer = 3� kT

3��r1
�t = C��t , �7�

Rdiff�2D�dimer = 3� kT

3��r2
�t = 3� kT

3���2�r1

�t

= C
��t

21/4�1/4 , �8�

where

C = 3� kT

3��r1
. �9�

In the present work, we define �=1 in order to conserve the
total excluded volume over time in each simulation. We will
therefore omit � in subsequent formulas.

After substituting these equations into Eq. �3�, the equa-
tion for calculating the collision time of two diffusion limit
circles follows:

C
��tA

nA
1/4 + C

��tB

nB
1/4 = C

�t� − tA

nA
1/4 + C

�t� − tB

nB
1/4 = dAB, �10�

where nA and nB are the relative areas of particles A and B.
The solution of Eq. �10� follows:

t� =�
�dAB/C�2�n

4
+

tA + tB

2
+

�tA − tB�2

4�dAB/C�2�n
if nA = nB = n ,

− b − �b2 − 4ac

2a
nA � nB, �

�11�

(a) (b)

M1

M2
M4

M1

M2

D1

M1

M2

M3

M4

M3

M1 M2

M4

M3

M4

M3

D1

M2

M4

M3

(1)

M1

(2)

(1)

(2)

FIG. 3. Model of the excluded volume effect; M, monomer; D,
dimer. �a� Excluded volume effects in the case of potential collision
and binding events. When a binding event produces an overlap of
particles, as in �1�, that binding event is presumed to have been
blocked by steric hindrance and is reversed. A collision resulting in
resampling of positions without binding �2� can also be blocked by
steric hindrance from surrounding particles �M3 or M4�. �b� Ex-
cluded volume effects impeding dissociation. For a dissociation
event to proceed, it must produce no overlap between particles, as
in �1�. When a dissociation event produces overlap of particles �2�,
that dissociation is presumed to have been hindered and is reversed
by the simulator.

FIG. 4. Pseudocode for GFRD-based simulation of generic as-
sembly reactions.
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where

a = �nA
−1/2 − nB

−1/2�2,

b = − 2� tA

nA
+

tB

nB
−

�tA + tB�
�nAnB

+ �dAB/C�2�nA
−1/2 + nB

−1/2�	 ,

c = � tA

nA
1/2 −

tB

nB
1/2	2

+ 2�dAB/C�2� tA

nA
1/2 +

tB

nB
1/2	 + �dAB/C�4.

�12�

In practice, we used a more complicated formulation that is
mathematically equivalent in exact arithmetic but reduces
round-off errors when dealing with small time differences.
The formula solves for

�A

nA
1/4 +

�A − �

nB
1/4 =

dAB

C
,

where A= t�− tA, �= tB− tA, A−�= t�− tA− tB+ tA= t�− tB. This
alternative formulation is solved by

t� = �d1 − d2
�1 + d3d2

2 − d1
2d3

�d1
2 − d2

2�
	2�dAB

C
	2

+ tA, �13�

where d1=nA
−1/4, d2=nB

−1/4,

d3 =
�

�dAB/C�2 =
tB − tA

�dAB/C�2 .

C. Simulation experiments

In order to validate the efficiency and correctness of the
model, we ran a series of simulation experiments using vari-
ants on the dimer system. These experiments were designed
to examine a range of conditions including systems with
little or no crowding effect, as might be typical of an in vitro
system, and those experiencing high levels of crowding as
might be expected in the cellular environment. We use stan-
dard MKS units for all constants defined below, except
where otherwise noted for clarity. The cytoplasmic viscosity
of Swiss 3T3 fibroblasts and Madin-Darby canine kidney
cells is slightly larger than the viscosity of water �31�. There-
fore, we set the viscosity value in Eq. �9� as 0.0012 Pa s,
which is 20% larger than the viscosity of water at 293.15 K
�32�. The radius of a monomer, r1, was set to 2.5 nm. The

radius of a dimer, r2, was set to 2.5��2 nm, in order to
provide no net entropic favorability toward binding under
high crowding conditions. The scaling constant C in Eq. �9�
was 3.59�10−5 m s−1/2. The binding probability B was set to
0.75 and the mean dissociation time of dimers, M, was set to
10−9 s for our all simulation cases. Finally, the threshold dis-
tance d, within which particles are allowed to bind, was set
to 0.5 nm. The size of the simulation space and the initial
concentrations of reactant monomers and inert particles var-
ied from experiment to experiment, as described below.

We first sought to establish empirically the efficiency of
the model, verifying an expected linear cost in system size
per simulation step. We conducted simulations for eight par-
ticle counts—from 500 to 4000 in increments of 500
particles—at a fixed total concentration of 5%. We therefore
varied the simulation space proportionally to particle count,
with sizes of 443�443 nm2 �500 particles�, 627�627 nm2

�1000 particles�, and so on. All particles were reactants for
this experiment, initially in monomer form. We ran ten inde-
pendent simulations for each condition for a fixed simulation
time of 5 �s. We estimated the order of run time using log-
log plots of run time versus particle count and iterations
versus particle count.

We next sought to establish that the model reasonably
captures the transition from uncrowded to crowded condi-
tions for simulations consisting only of reactant monomers.
We used a fixed simulation space of 100�100 nm2, varying
the total concentration of initial monomers from 10% to
42.5% in units of 2.5%. These values corresponded to varia-
tions in the number of initial monomers from 51 to 216.
Table I provides the initial monomer counts for each simu-
lation. We recorded the numbers of monomers and dimers at
intervals of 31.25 ns from 2.5 to 5 �s of simulation time.
We empirically determined that 2.5 �s was sufficient for the
system go to equilibrium and therefore treated all time points
beyond 2.5 �s as equilibrium measurements. Each simula-
tion was repeated 30 times. The equilibrium dimer concen-
tration was estimated for each condition by the mean over
the 30 trials and the 81 time points from 2.5 to 5 �s for each
trial. Error bars were similarly calculated as the standard
deviations over these same data points for each condition.
For comparison, we also determined analytic dimer concen-
trations on the assumption of no crowding effects. This curve
was determined by estimating keq from the 10% crowding
simulation and solving for the equation keq=D / �M0−2D�2,
where D is the dimer concentration and M0 is the initial
monomer concentration.

TABLE I. Particle counts used to simulate variation of reactants �R� and inert crowding agents �I� to
produce total concentrations from 10% to 42.5% on a 100�100 nm2 simulation space.

Concentration �%� 10 12.5 15 17.5 20 22.5 25

R �Fig. 8�a�� 51 64 76 89 102 115 127

R+ I �Fig. 8�b�� 51+0 51+13 51+25 51+38 51+51 51+64 51+76

Concentration �%� 27.5 30 32.5 35 37.5 40 42.5

R �Fig. 8�a�� 140 153 166 178 191 204 216

R+ I �Fig. 8�b�� 51+89 51+102 51+115 51+127 51+140 51+153 51+165
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Finally, we sought to test the existence of a crowding
effect in isolation by modeling reactions in the presence of
varying concentrations of inert monomers. We used a fixed
simulation space of 100�100 nm2, and a fixed reactant
monomer concentration of 10%. We then added varying
amounts of inert particles to produce total occupied volumes
of 10%–42.5% in increments of 2.5%. Table I provides ini-
tial counts of reactant monomers and inert monomers over
these conditions. As with the pure reactant experiments, we
completed 30 repetitions per parameter value, running each
for 5 �s of simulation time and measuring progress in units
of 31.25 ns. Equilibrium concentrations were again estab-
lished by averaging over the 30 trials and 81 time points
from 2.5 to 5 �s in each trial, and error bars were estab-
lished by the standard deviations over these data points. For
comparison, we also plot the constant dimer concentration
we would observe on addition of inert particles under the
assumption of no crowding effects.

III. RESULTS

Figure 5 shows screen snapshots illustrating the operation
of our dimer model. Figures 5�a� and 5�b� show an example
of a low-concentration simulation containing only reactant
particles. The simulation space is 20% occupied, with a mix-
ture of monomers and dimers. Pairs of concentric circles
show the actual radii of the particles �inner circles� and their

diffusion limit circles �outer circles� at a fixed point in time.
Figures 5�c� and 5�d� show a similar system in a highly
crowded condition, 40% total occupancy, through the addi-
tion of inert monomers �closed dark circles�. The inert mono-
mers also diffuse, and thus have diffusion limit circles, but
are not capable of reacting. They would therefore be ex-
pected to have no effect on reaction progress under low-
concentration conditions but to produce crowding effects un-
der high-concentration conditions such as those in the figure.
The temporally produced dimers in Fig. 5�a� are quickly dis-
sociated in the low crowding condition, but the dimers in
Fig. 5�c� are stabilized by additional crowding agents in the
high crowding condition. Figure 6 shows an example of the
reaction progress of the system for a single high-crowding
parameter set �216 reactant monomers at 42.5% total concen-
tration�, averaged over 30 trials. The figure covers the time
scale from 0 to 5 �s in Fig. 6�a�, and shows the magnified
region 0–3.75 ns in Fig. 6�b�. The figure shows a rapid rise
of dimers early in the simulation, settling into an equilibrium
of monomers �dotted line� versus dimers �solid line� within
about 1 �s. Error bars reveal that there is a moderate level of
reaction noise at this scale, shown by variability from simu-
lation to simulation. The level of noise appears essentially
constant from the beginning of the simulation until equilib-
rium, suggesting that it results predominantly from a con-
tinuing random exchange of particles between monomer and
dimer.

In order to validate the model, we first examined effi-
ciency of the system by examining the scaling of run times
for eight simulation sizes—from 500 particles to 4000 par-
ticles in increments of 500 particles—over a fixed simulation
time of 5 �s. Figure 7�a� shows the run time versus system
size, providing a clear linear fit on a log-log plot with a slope
of 2.00. This slope reveals that the run time increases qua-
dratically with the particle count for a fixed simulation time.
Figure 7�b� shows the number of iterations �simulation steps�
required to simulate 5 �s as a function of particle count,
showing a linear dependence �slope 1.01�. We can thus con-
clude that the run time per iteration grows linearly with par-
ticle count. Figure 7�c� confirms that the run time does in-
deed vary linearly with particle count, with an average run
time of 275 ns per particle per iteration. The model therefore
performs in accordance with theoretical models and appears
scalable to handle systems of thousands of particles on time
scales of microseconds, as we would require for many cellu-
lar assembly systems.

We next examined the behavior of the system in the ab-
sence of inert particles. Figure 8�a� shows equilibrium con-
centrations of dimers as a function of initial monomer con-
centration, where the simulation space is 100�100 nm2, B
=0.75, and M =10−9 s. Table I provides the reactant mono-
mer count for each simulation. The number of reactants var-
ies from 51 at 10% concentration to 216 at 42.5% concen-
tration. The average number of dimers, the products of the
homodimerization reaction, increases as the concentration of
reactants increases. The upper curve, marked with error bars,
represents the simulation result of our model. The lower

(a) (b)

(c) (d)

FIG. 5. Snapshots of simulator progress from two simulations
with binding probability B=0.75, and mean time in exponential
distribution for a breaking event M =10−9 s. �a�,�b� 20% reactant
only; �c�, �d� 20% reactant+20% inert particles, where open circles
are reactants, closed �dark� circles are inert particles, the outer
circles of particles are diffusion limit circles, and open circles with
a dot in the center are dimers. Amount of simulated time as of the
pictured state is �a� 4.5318, �b� 4.5346, �c� 4.9448, and �d�
4.9455 �s.
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curve, marked with squares, represents an analytically deter-
mined equilibrium derived from the assumption of no crowd-
ing effect. The figure shows the dimer counts in higher-
concentration cases in our model to be larger than the dimer
counts calculated by the law of mass action, which means
our model captures an increased crowding effect that the
continuum mass-action model does not.

Figure 8�b� shows the results from simulations for testing
the effects of varying inert particle concentration for a fixed
10% concentration of reactant particles. Table I shows the
particle counts for each simulation. In the absence of any
crowding effect, we would expect to observe a constant equi-

librium dimer concentration independent of inert monomer
concentration. The lower curve, marked with squares, illus-
trates the constant dimer count expected in the absence of
crowding effects. The figure, by contrast, shows a steady
increase in equilibrium dimer concentration as a function of
inert monomer concentration. In particular, the simulations
show an approximately 1.5-fold increase in equilibrium
dimer concentration from 10% total crowding to 42.5% total
crowding. Crowding in the simulations can slow association
reactions through reduced diffusion rate, and steric hindrance
from nearby particles can slow dissociation reactions through
the excluded volume effect. The increase in polymerization
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FIG. 6. Reaction progress versus time for a sample parameter set. The reaction was run with purely reactant monomers using B=0.75,
M =10−9 s, and total concentration 42.5%. Times �a� 0–5 and �b� 0–3.75 ns. The dotted line is the reaction progress for monomers, and the
solid line is the reaction progress for dimers. Error bars show standard deviations across 30 simulations for each time point.
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FIG. 7. Simulator efficiency in run time and iterations as functions of particle count. �a� log10- log10 plot of run time versus particle
counts. �b� log10- log10 plot of iterations versus particle counts. �c� Run time per iteration versus particle counts. For all simulations described
here, B=0.75, M =10−9 s, and all particles are reactants.
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observed here would be consistent with a reduction in the
dissociation rate relative to the association rate. This result
shows that the nonbinding particles likely play a crucial role
in assembly kinetics, especially in high-concentration cases.

IV. DISCUSSION

We have constructed a prototype simulator to assess the
ability of the recent GFRD method �26� to provide a compu-
tationally efficient model of assembly chemistry in cellular
levels of crowding. We developed several extensions to the
method designed to make it suitable for generic models of
assembly chemistry and tested these extensions for a model
dimer assembly system. A series of simulations with this
model system confirm: that the model is efficient enough to
model systems of several thousand reactant particles on time
scales of microseconds, that it accurately models reaction
kinetics under low-crowding conditions, and that it exhibits
the expected macromolecular crowding effects under condi-
tions of dense packing of either reactant monomers or inert
crowding agents. These results support the contention that
GFRD will provide a valuable supplement to existing com-
putational tools for modeling assembly chemistry that is par-
ticularly well suited to modeling spatial and crowding effects
difficult to examine in other comparably efficient models.

There are many avenues by which this work can be ad-
vanced to handle more challenging examples of assembly
chemistry in crowded environments. Our model currently as-
sumes spherical particles with spherical diffusion limit
circles. It will be necessary to allow more complicated as-
sembly geometries to simulate large structures, such as cy-

toskeletal elements or viral capsids. We can use for this pur-
pose a hierarchical structure model similar to that used in
prior Brownian �33� and stochastic simulation algorithm
�SSA� based �34� simulators we have developed for studying
viral capsid assembly. While one can continue to use spheri-
cal diffusion limit circles for arbitrary-shaped structures, ef-
ficiency is likely to demand tighter bounding curves account-
ing for both translational and rotational diffusion. One
particularly important generalization for many such systems
will be converting the model from two to three dimensions.
While the two-dimensional model may be suitable for some
forms of cellular assembly, such as assembly on membranes
or at the leading edges of migrating cells, three dimensions
will be more generally applicable. Converting from two to
three dimensions requires only minor changes in the math-
ematics of the model, but it can be expected that larger num-
bers of particles and thus greater run times will be needed to
develop realistic models of assembly in crowded three-
dimensional spaces. Many other factors, such as distributions
of inert particle sizes and realistic spatial models of the cell
environment and its various immobile components, may also
become important to models of such systems. Experimental
validation is an important, but challenging, question. Simu-
lations of this sort are needed because of the difficulty of
experimentally monitoring large assembly reactions in vivo.
Furthermore, analysis of in vitro systems in the presence of
crowding agents, as has been used to probe crowding effects
on many assembly reactions �1,2�, could provide a partial
solution. New technologies are likely to be needed, however,
to definitively determine how closely this or other simulation
methods approximate true in vivo assembly chemistry.
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FIG. 8. Equilibrium dimer counts as functions of total crowding over a range of 10–42.5 % crowding. �a� Results of simulations using
exclusively reactant monomers. �b� Results of simulations with fixed initial reactant monomer concentration 10% and varying inert monomer
concentration. Each figure shows one curve derived from GFRD simulations with error bars showing the standard deviations across 30
simulations and 81 equilibrium time points. A second curve shows analytically determined dimer solutions assuming no crowding effect
based on keq estimated from the 10% crowding simulations �squares�. Both simulations used parameters B=0.75, M =10−9 s.
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